Holographically directed assembly of polymer nanocomposites.
نویسندگان
چکیده
Layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. The polymerizable mixture is composed of pentaerythritol triacrylate (monomer), 1-vinyl-2-pyrrolidinone (monomer), and photoinitiator. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The effects of exposure time, power density, nanoparticle size, and periodicity on the final nanocomposite structure were measured with transmission electron microscopy to determine the mechanism for particle segregation. Diffraction from the sample was monitored as well, though its magnitude was not a good predictor of nanostructure in this relatively low index contrast system. Exposure time did not have a strong effect on the final structure. The best nanoparticle sequestration was observed at reduced laser power density, smaller interferogram periodicity, and decreased nanoparticle size, indicating that particle segregation is dominated by diffusion-limited nanoparticle transport directed by a matrix containing a gradient of polymerization kinetics.
منابع مشابه
Diffraction Gratings for Neutrons from Polymers and Holographic Polymer-Dispersed Nanocomposites
We discuss the applicability of holographically recorded gratings in photopolymers and holographic polymer-dispersed liquid crystals as neutron optical elements. An experimental investigation of their properties for light and neutrons with different grating spacings and grating thicknesses is performed. The angular dependencies of the diffraction efficiencies for those gratings are interpreted ...
متن کاملTernary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage.
Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors, and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale, and multiphase building blocks have been investigated w...
متن کاملChemical-Bonding-Directed Hierarchical Assembly of Nanoribbon-Shaped Nanocomposites of Gold Nanorods and Poly(3-hexylthiophene).
Nanoribbon-shaped nanocomposites composed of conjugated polymer poly(3-hexylthiophene) (P3HT) nanoribbons and plasmonic gold nanorods (AuNRs) were crafted by a co-assembly of thiol-terminated P3HT (P3HT-SH) nanofibers with dodecanethiol-coated AuNRs (AuNRs-DDT). First, P3HT-SH nanofibers were formed due to interchain π-π stacking. Upon the addition of AuNRs-DDT, P3HT-SH nanofibers were transfor...
متن کاملDirected covalent assembly of rigid organic nanodisks using self-assembled temporary scaffolds.
Organic nanodisks, a new type of organic nanoparticles suitable for creating polymer-polymer nanocomposites, are produced by controlled polymerization within the hydrophobic interior of bicelles (discoidal lipid aggregates) used here as recyclable scaffolds.
متن کاملPolypeptide-guided assembly of conducting polymer nanocomposites.
A strategy for fabrication of electroactive nanocomposites with nanoscale organization, based on self-assembly, is reported. Gold nanoparticles are assembled by a polypeptide folding-dependent bridging. The polypeptides are further utilized to recruit and associate with a water soluble conducting polymer. The polymer is homogenously incorporated into the nanocomposite, forming conducting pathwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 4 10 شماره
صفحات -
تاریخ انتشار 2010